Note on generalized q–Bernstein Durrmeyer operators

Honey Sharma, Vijay Athavale
Gulzar Group of Institutions, Khanna, Ludhiana, Punjab, India
E-mail: pro.sharma.h@gmail.com

Abstract: In this note, we discuss the results obtained in [6] for generalized q–Bernstein Durrmeyer operators. Here, we mention the readers about the correct form so that further research on this topic may be done correctly.

Keywords: q–integers, q–Bernstein operators, q–Durrmeyer operators.
Mathematical subject classification: 41A25, 41A35.

1. Introduction

In 1987, the rapid development of q–calculus led to the discovery of new generalization of Bernstein polynomials by Lupas (see [5]), which involves q–integers. About after 10 years, in 1997 Phillips et al. [8] introduced another generalization of Bernstein polynomials based on q–integers and q–binomial coefficients. In 2005, Derriennic [3] proposed the first integral modification of q-Bernstein polynomials using jacobi weight. Gupta [4] in 2008 proposed the simple q–Bernstein-Durrmeyer operators and established some convergence properties in real domain. He estimated the moments of q–Bernstein-Durrmeyer operators and studied the rate of convergence for these operators. He established a direct results in terms of modulus of continuity. For detailed study on the applications of q– calculus in approximation theory and specially on the convergence of various q operators, we refer the readers to the important recent book [1].

In 2014, Agrawal et al [2], introduced Stancu type generalization of modified Schurer operators based on q–calculus. They established the Voronovskaja type theorem for q–modified Schurer-Stancu operators. They also discussed local direct results for the operators and studied the statistical convergence of operators. In last section they obtained some convergence properties of the limit q–modified Schurer Stancu operators. Recently, Mishra and Patel [6] claimed to propose the Stancu type generalization of q–Bernstein Durrmeyer operators. Their operators is merely a special case of q–modified Schurer-Stancu operators of Agrawal et al. [2], which was introduced and studied earlier. This fact motivated us to write the present note.
2. Discussion

Agrawal et al. [2], introduced q-modified Schurer-Stancu operators as below:

Definition 1. For any $f \in C[0, 1 + p]$ and $\alpha, \beta, p \in \mathbb{N}_0$ (the set of all non-negative integers), $0 \leq \alpha \leq \beta$ and $x \in [0, 1 + p]$, the operator is defined by

$$S_{n,p}^{(\alpha, \beta)}(f, q, x) = \frac{[n+p+1]_q}{(1+p)^{2n+2p+1}} \sum_{k=0}^{n+p} b^{q}_{n+p,k}(x) q^{-k} \int_0^{1+p} f \left(\frac{[n]_q t + \alpha}{[n]_q + \beta} \right) b^{q}_{n+p,k}(qt) dq t,
$$

(2.1)

here $b^{q}_{n+p,k}(x) = \binom{n}{k}_q x^k (1 + p - x)^{n+p-k}$.

Later Mishra and Patel [6] claimed to introduce the following form of operators:

Definition 2. For any $f \in C[0, 1]$ and $0 \leq \alpha \leq \beta$, the operator is defined by

$$D_{n,q}^{\alpha,\beta}(f; x) = [n+1]_q \sum_{k=0}^{n} p_{nk}(q; x) q^{-k} \int_0^1 f \left(\frac{[n]_q t + \alpha}{[n]_q + \beta} \right) p_{nk}(q; qt) dq t, \tag{2.2}
$$

here $p_{nk}(q; x) = \binom{n}{k}_q x^k (1 - x)^{n-k}$.

Clearly operator (2.2) can be obtained from operator (2.1) by replacing p with 0.

We want to bring notice on the limiting case of the operator $D_{n,q}^{\alpha,\beta}(f; x)$. Limiting case of any operator must be independent of the variable n. Limiting case proposed in [6] involves n which is not correct. We can redefine the limiting operator in better way as below:

For $q \in (0, 1)$ be fixed and $x \in [0, 1]$,

$$D_{\infty,q}^{\alpha,\beta}(f; x) = \frac{1}{1-q} \sum_{k=0}^{\infty} p_{\infty k}(q; x) q^{-k} \int_0^1 f \left(\frac{t + \alpha(1-q)}{1+\beta(1-q)} \right) p_{\infty k}(q; qt) dq t, \tag{2.3}
$$

where $p_{\infty k}(q; x) = \frac{1}{(1-q)^k [n]_q} x^k (1-x)^{\infty}$. Again operator (2.3) can be obtained as special case (for $p = 0$) of operator $S_{\infty,p}^{(\alpha, \beta)}(f, q, x)$ [2, Definition 3].

In approximation theory estimation of moments of the operator is initial and most important objective, all the analysis of the operator depends on moments. By using the methods as discussed in [4, pp. 175], the moments...
of the operator (2.3) takes the following form:

\[
D_{\infty,q}^{\alpha,\beta}(f; x) = 1,
\]

\[
D_{\infty,q}^{\alpha,\beta}(t; x) = \frac{1}{1 + \beta(1 - q)}(1 + q(x - 1)) + \frac{\alpha(1 - q)}{1 + \beta(1 - q)},
\]

\[
D_{\infty,q}^{\alpha,\beta}(t; x) = \frac{1}{(1 + \beta(1 - q))^2}\left((1 - q)^2(1 + q) + q(1 + 2q)(1 - q)x + q^3(1 - q)x + q^4x^2\right)
\]
\[
+ \frac{2\alpha(1 - q)}{1 + \beta(1 - q)^2}(1 + q(x - 1)) + \frac{\alpha^2(1 - q)^2}{(1 + \beta(1 - q))^2}.
\]

3. Conclusion

The generalization proposed by Mishra and Patel [6] is just a special case of generalization of Durrmeyer operators introduced by Agrawal et al [2] for \(p = 0\). Analysis of both papers are same, their is no new result discussed by Mishra and Patel. Moreover, limiting case of the operator proposed in [6] is not appropriate. To see the correct form of the more general case we refer [2]. Also the similar mistake was done by Mishra and Patel for limiting operators in [7].

References